BIBLIOGRAPHIE

- [1] W. Steinkopf, Liebigs Ann. Chem. 413, 333 (1916).
- [2] H. D. Hartough, dans «Thiophene and its derivatives», p. 512, Interscience Publishers, New-York 1952.
- [3] W. Steinkopf, Liebigs Ann. Chem. 403, 17 (1914).
- [4] H. Y. Lew & C. R. Noller, J. Amer. chem. Soc. 72, 5715 (1950).
- [5] L. M. Jackman & S. Sternhell, dans "Applications of Nuclear Magnetic Resonance, Spectroscopy in Organic Chemistry", Vol. 5, Pergamon Press, London 1968.
- [6] B. Miche de Malleray, Helv. 54, 343 (1971).

38. An Efficient Synthesis of Thyrotropin Releasing Hormone (TRH)

by Pierre Rivaille and Gérard Milhaud

Laboratoire associé au C.N.R.S., Laboratoire des Isotopes Service de Biophysique, Faculté de Médecine St-Antoine 27, rue Chaligny, 75 Paris 12^e, France

(26, XII. 70)

Summary. A convenient and simple synthesis of L-pyroglutamyl-L-histidyl-L-prolinamide is described. Two pathways using the solid phase technique have led to the pure tripeptide.

Thyrotropin releasing hormone (TRH) was isolated from porcine hypothalamus by *Schally et al.* [1] and from ovine hypothalamus by *Guillemin et al.* [2], and proved to be identical with L-pyroglutamyl-L-histidyl-L-prolinamide [3]. A classical synthesis of this tripeptide was reported recently [4]; the solid phase technique [5] used here gives better yields, is simpler and quicker.

The following reaction scheme was used. *t*-Butyloxycarbonyl (Boc) is introduced in proline, glutamic acid or glutamine as the amine protecting group [6] using Bocazide at constant alcaline pH. The purity of the Boc-aminoacids was checked by measuring the rotation and by thin-layer chromatography. The histidine imidazole group was protected with o, p-dinitrophenyl before condensation, as selective removal of this group can easily be performed by thiolysis at pH 8 [7].

Protected histidine was reacted with proline linked on the chloromethylresin in the presence of dicyclohexyl-carbodiimide (Dcc). The glutamyl residue was introduced in two ways: (A) Boc-pyroglutamic acid was condensed in the presence of Dcc; (B) Boc-glutamine dinitrophenylester [8] was reacted with the dipeptide linked to the resin in dimethylformamide. The tripeptide was split from the resin by aminolysis [9], the imidazole protecting group removed, and the glutamine converted into pyroglutamic acid by boiling acetic acid [10].

The tripeptide was purified by Sephadex G10 filtration followed by silica-gel chromatography. The pure material did not react with ninhydrin, as could be anticipated due to the presence of prolinamide and pyroglutamic acid. After silica-gel thin layer chromatography in several solvant systems [11], the product gave a single spot when detected with *Pauly*'s reagent. The optical rotation was of the order of the one published [4]. After acid hydrolysis, the three initial aminoacids could be detected by spraying the thin layer chromatograpue with ninhydrin.

	pH	Time	Yield	m .p.	[a] _D	<i>c</i> = 1
Boc-Pro	8.6	2 h	96%	134°	- 60,0°	(AcOH)
Boc-Glu	10.0	18 h	97%	$116 - 118^{\circ}$	- 16,1°	(MeOH)
Boc-Gln	10.3	24 h	82%	158°	- 3,0°	(EtOH)

Experimental. -1. Preparation of Boc-L-proline, Boc-L-glutamic acid and Boc-L-glutamine. Radiometer autotitrator TTT was used and the reaction time extended to 1,5 time of the usual duration to increase yields.

Thin layer chromatography with silica gel *Merch* 5721/0025 was performed using as solvants $CHCl_3$ -MeOH-AcOH (85/10/5, v/v).

2. N(im)-DNPN- α -Boc-L-histidine. L-histidine methylester dihydrochlorid was prepared [12] (yield 80%, m.p. 127–130°, $[\alpha]_{\rm D} = +16,0^{\circ}, c = 1$ (MeOH)) and the amine group protected with Boc in pyridine according to [13] (yield 82%, m.p. 137°, $[\alpha]_{\rm D} = -14^{\circ}, c = 1$ (MeOH)); finally, dinitrofluorobenzene was reacted with the imidazole group according to [7] (yield 62%, m.p. 94°, $[\alpha]_{\rm D} = 55,3^{\circ}, c = 1$ (ethyl acetate)).

3. Boc-L-pyroglutamic acid was prepared according to [14]. This compound is easier to purify by crystallization than Boc-glutamic acid [15].

4. Preparation of Boc-L-proline linked to the resin, R. Bio-beads resin SX2 200-400 mesh was reacted with chloromethyl-methyl-ether [16] in the presence of tin(IV) chloride. The chloride content of the dried resin was 1,37 mMol/g. Boc-proline (6,44 g) was heated at 90° for 50 hours with the chloromethylresin (2,1 g) in presence of dry ethanol (6 ml) and trimethylamine (0,42 ml). The resin content was 0,117 mMol Boc-Pro/g.

5. Preparation of R-L-prolyl-L-histidyl-N(im)-DNP- α -Boc-pyroglutamic acid (procedure A). R-Boc-proline (1,37 g) was introduced in the apparatus described by Merrifield [5] and shaken in the presence of dioxane (three portions of 10 ml for 5 min each), HCl 4N/dioxane (10 ml, 30 min), dioxane (3 × 10 ml, 5 min each), CHCl₃ (3 × 10 ml, 5 min each), triethylamine/CHCl₃ (1:9, v/v) (10 ml, 10 min), CHCl₃ (3 × 10 ml, 5 min each), CH₂Cl₂ (3 × 10 ml, 5 min each). Then N(im)-DNP-N- α -Boc-His (647 mg) was suspended in 6 ml CH₂Cl₂ and shaken for 5 min in presence of the resin; Dcc (500 mg/ml CH₂Cl₂) (0.87 ml) was added and shaken for 150 min, then CH₂Cl₂ (3 × 10 ml, 5 min each). The protecting group of pyroglutamic acid was removed with HCl 4N/Dioxane and the resin washed with acetic acid and ethanol. The weight increase of the dried resin was 56 mg (vield: 80%).

6. L-histidyl-N(im)-DNP-L-prolinamide-L-pyroglutamyl. The resin from § 5 was suspended in dry methanol saturated with NH_3 at 0° and shaken for 48 hours at room temperature [9]. After filtration, the resin was washed with methanol and the solvent removed under vacuum at low temperature.

7. L-pyroglutamyl-L-histidyl-L-prolinamide. The residue was dissolved in H₂O/CH₃OH (1:1, v/v) (10 ml) and the pH adjusted to 8 with sodium carbonate. Thioethanol was added and the mixture left overnight at room temperature [7]. Addition of glacial acetic acid brought the pH to 3,5. The solvents were removed under vacuum; the residue was dissolved in water and dinitrophenol was extracted with ether. The aqueous layer was freeze-dried, taken up in water, and desalted by Sephadex G10 filtration. The head fractions reacting with Pauly's reagent were collected and freeze-dried. The residue was purified by column-chromatography on silica gel (Merck 7734, 70-325 mesh; eluent: CHCl₃-CH₃OH (30:60, v/v)). The fractions giving a color reaction with Pauly's reagent were collected, and the solvents removed under vacuum at room temperature. The residue (50 mg) was dissolved in acetic acid and freeze-dried. The product is hygroscopic. [α]_D = 40° (c = 1; AcOH), yield 73% from resin linked proline.

8. Preparation of R-L-prolyl-L-histidyl-N(im)-DNP-N α -Boc-L-glutamine (procedure B). The procedure described in § 5 was applied: to R-L-Boc proline (840 mg) and N(im)-DNP-N α -Boc-L-histidine (200 mg), but purified dimethylformamide was used to wash the resin instead of CH₂Cl₂; dinitrophenyl-L-Boc-glutamine [8] (m.p. 154-155°, $\lceil \alpha \rceil_D = 35°$, (c = 1; dimethylform-

amide)) (382 mg) was allowed to react during 3 hours. The resin was processed as described: the weight increase amounted to a 89% yield.

9. Cyclization of L-glutaminyl-L-histidyl-L-prolinamide. The repetition of the steps described in § 6 for aminolysis and § 7 for thiolysis has led to L-glutaminyl-L-histidyl-L-prolinamide. The product was boiled 2 min in glacial acetic acid to convert the glutamyl into the pyroglutamyl group [10]. The mixture was purified as described. The product is hygroscopic. $[\alpha]_D = -39^\circ$, (c = 1; AcOH), yield 60% from the resine linked prolin.

10. Comparison of the peptides prepared by the procedures A and B. Both products exhibit the same chromatographic behaviour in several solvent systems [11]. After acid hydrolysis (6N HCl, 24 h under vacuum) and thin layer chromatography in 70% ethanol – H_2O (95:5 v/v), the two preparations gave rise to the three initial aminoacids.

11. Biological activity in Man. At the dose of $200 \ \mu g$, these preparations are able to elicit a large increase of circulating TSH in 8 normal children as well as in 3 untreated hypothyroid children [17]; they have been used to differentiate hypothalamic from hypophyseal insufficiency [17]. No side effect was noted after intravenous administration.

The technical help of Miss *M.-O. Delaunay* is gratefully aknowledged.

BIBLIOGRAPHY

- A. V. Schally, C. Y. Bowers, T. W. Reddings & J. F. Barrett, Biochem. biophys. Res. Commun. 25, 165 (1966); A. V. Schally, T. W. Reddings, C. Y. Bowers & J. F. Barrett, J. biol. Chemistry 244, 4077 (1969).
- [2] R. Guillemin, R. Burgus, E. Sakiz & D. N. Ward, C. r. hebd. Séances Acad. Sci. D, 262, 2278 (1966).
- [3] R. Burgus, T. F. Dunn, D. Desiderio & R. Guillemin, C. r. hebd. Séances Acad. Sci. D, 269, 1870 (1969).
- [4] D. Gillessen, A. M. Felix, W. Lergier & R. D. Studer, Helv. 53, 63 (1970).
- [5] R. B. Merrifield, J. Amer. chem. Soc. 85, 2149 (1963); 86, 304 (1964).
- [6] E. Schnabel, Liebigs Ann. Chem. 702, 188 (1967).
- [7] F. Chillemi & R. B. Merrifield. Biochemistry 8, 4344 (1969).
- [8] M. Bodansky & V. du Vigneaud, J. Amer. chem. Soc. 81, 5688 (1956).
- [9] M. Bodansky & J. T. Sheehan, Chemistry and Ind. 1964, 1423.
- [10] F. Folkers, J. K. Chang & B. L. Currie, Biochem. biophys. Res. Commun. 39, 110 (1970).
- [11] J. Bøler, F. Enzmann & K. Folkers, Biochem. biophys. Res. Commun. 37, 705 (1969).
- [12] N. C. Davis, J. biol. Chemistry 223, 935 (1956).
- [13] E. Schröder & H. Gibian, Liebigs Ann. Chem., 656, 190 (1962); K. Hofmann, W. Haas, M. J. Smithers & G. Zanetti, J. Amer. chem. Soc. 87, 631 (1965).
- [14] E. Schröder & E. Klieger, Liebigs Ann. Chem. 673, 196 (1964).
- [15] J. M. Stewart & J. D. Young, 'Solid Phase Peptide Synthesis', p. 29, Freeman Edit., London 1969.
- [16] R. B. Merrifield, Biochemistry 3, 1385 (1964).
- [17] G. Milhaud, P. Rivaille, M. S. Moukhtar, J. C. Job & E. Binet, C. r. hebd. Séances Acad. Sci. D, 271, 1900 (1970).